Optimization of black-box models with uncertain climatic inputs—Application to sunflower ideotype design
نویسندگان
چکیده
Accounting for the interannual climatic variations is a well-known issue for simulation-based studies of environmental systems. It often requires intensive sampling (e.g., averaging the simulation outputs over many climatic series), which hinders many sequential processes, in particular optimization algorithms. We propose here an approach based on a subset selection in a large basis of climatic series, using an ad-hoc similarity function and clustering. A non-parametric reconstruction technique is introduced to estimate accurately the distribution of the output of interest using only the subset sampling. The proposed strategy is non-intrusive and generic (i.e. transposable to most models with climatic data inputs), and can be combined to most "off-the-shelf" optimization solvers. We apply our approach to sunflower ideotype design using the crop model SUNFLO. The underlying optimization problem is formulated as a multi-objective one to account for risk-aversion. Our approach achieves good performances even for limited computational budgets, outperforming significantly standard strategies.
منابع مشابه
Performance Evaluation of Supply Chain under Decentralized Organization Mechanism
Abstract Nowadays among many evaluation methods, data envelopment analysis has widely used to evaluate the relative performance of a set of Decision Making Units (DMUs). Data Envelopment Analysis (DEA(is a mathematical tool for evaluating the relative efficiency of a set Decision Making Units (DMUs), with multiple inputs and outputs. Traditional DEA models treat with each DMU as a “black box" t...
متن کاملMeasuring the performances of Medical Diagnostic Laboratories based on interval efficiencies
The classic data envelopment analysis (DEA) models have overlooked the intermediate products, internal interactions and the absence of data certainty; and deal with analyzing the network within the “Black Box” mode. This results in the loss of important information and at times a considerable modification occurs in efficiency results. In this paper, a Three-stage network model is considered wit...
متن کاملStructured Kernel Based Modeling: An Exploration in Short-Term Load Forecasting
This paper considers an exploratory modeling strategy applied to a large scale reallife problem of power load forecasting. Different model structures are considered, including Autoregressive models with eXogenous inputs (ARX), Nonlinear Autoregressive models with eXogenous inputs (NARX), both of which are also extended to incorporate residuals that follow an Autoregressive (AR) process (AR-(N)A...
متن کاملScale Efficient Targets in Production Systems With Two-stage Structure Under Imprecise Data Assumption
Traditional data envelopment analysis (DEA) models evaluate two-stage decision making unit (DMU) as a black box and neglect the connectivity may exist among the stages. This paper looks inside the system by considering the intermediate activities between the stages where the first stage uses inputs to produce outputs which are the inputs to the second stage along with its own inputs. Additional...
متن کاملThe Design of Inverse Network DEA Model for Measuring the Bullwhip Effect in Supply Chains with Uncertain Demands
Two different bullwhip effects with equal scores may have different sensitivities and production patterns. As a result, the difference between these two seemingly equal scores has been ignored in previous methods (such as frequency response and moving average). So, the present study constructs a model of Inverse Network Data Envelopment Analysis, to introduce the relative and interval scores of...
متن کامل